다중 비교 (Multiple comparison) 문제와 보정 방법
본 포스팅에서는 다중 비교가 무엇인지, 어떤 방법으로 보정할 수 있는지를 알아보겠습니다. 다중 분석이 문제가 된다는 점을 이해하기 위해 먼저 예를 설명하겠습니다.폐암과 연관성이 있는 요인을 찾기 위한 연구를 수행한다고 해봅시다. 예를 들어, 나이, 체질량 지수, 식습관, 음주습관, 운동량 등 100 가지의 요인에 대해 폐암과의 연관성을 유의 수준 0.05 하에서 비교하고자 합니다. 이를 위해 폐암 환자와 정상인을 수집했고, 연속형 변수에 대해서는. T-test, 범주형 변수는 카이제곱 검정을 수행하여 최종적으로, 운동량, BMI, 학력, 우유 섭취량, 경제력이 폐암과 연관성이 있다고 나왔다고 합시다. 이 때, 이 변수들이 폐암과의 연관성이 있다고 결론 내릴 수 있을까요? 물론 각각의 검정은 유의 수준 0.05 하에서 검정한 것이기 때문에, 연관성이 실제로 있을 가능성이 높은 것이 사실입니다. 하지만 100가지 요인에 대한 검정을 하나의 연구로 볼 때, 모든 변수가 연관성이 실제로 없더라도 평균적으로 5개의 잘못된 결과를 얻게 됩니다. 만약에 이러한 잘못된 결론이 학계에 보고되면 잘못된 과학적 결론을 내릴 수 있습니다. 따라서, 개별 검정 뿐 아니라 한 연구의 에러를 줄이는 방법이 필요합니다. 즉, 한 연구에서 나올 수 있는 잘못된 결과를 줄이자 라는 것이 다중검정 보정의 핵심입니다.
여기서 family-wise type 1 error 의 개념이 등장합니다. Family-wise type 1 error rate (FWER) 란 한 연구에서 적어도 한 개의 잘못된 결론 (false positive)이 나올 수 있는 확률을 의미합니다. 만약 이것이 0.05 라면 한 연구에서 적어도 1개의 잘못된 결론이 나올 확률이 0.05 라는 것입니다. FWER 를 통제하는 방법으로 잘 알려진 것이 본페로니 보정 방법입니다. 본페로니 보정은 test 의 수가 n 이고, FWER 를 0.05 로 통제할 때, 개별 테스트의 유의수준을 alpha/m 으로 설정시킵니다. 모든 검정이 실제로 연관성이 없는 경우 (null 인 경우), 아래 식이 m 이 클 수록 대략적으로 만족됩니다.
$$ FWER= 1-(1-\alpha/m)^m = \alpha $$
<본페로니 방법을 통한 FWER 통제>
하지만 본페로니 방법의 문제는 너무 보수적 (strict/conservative) 이라는 것입니다. 보수적이라는 뜻은 귀무가설을 웬만해선 기각하지 않는다는 것으로, false positive 는 상당히 줄일 수 있지만, false negative 는 많아지게 됩니다. 예를 들어 test 의 개수가 1000개인데, 연관성이 없는 것이 900개, 연관성이 있는 것이 100개 일 때, 900개 중에 1개라도 잘못나올 확률은 1-(1-0.05/1000)^900 < 0.05 입니다. 물론 false positive 가 적어져서 좋긴 하지만, false negative 가 많아진다는 문제가 생깁니다. 따라서, 다중 비교 검정의 핵심은 어떻게 false positive 를 줄이면서, false negative 도 줄일 수 있는가? 입니다.
다중 검정 보정 방법
그러면 어떻게 false positive, false-negative 의 타협을 보는가 (FWER 은 본페로니 수준이면서, false negative 를 줄일 수 있는가)에 문제에 있어서 도입되는 한 가지 방법이 바로 multi-step 보정 방법입니다. Multi-step 보정법은 step-down 방법, step-up 방법으로 나뉘는데, 예를 들어, step-down 방법은 Holm's 방법, step-up 방법은 Hochberg 방법이 있습니다. 이러한 multi-step 보정 방법은 fwe 는 그대로 두면서 false negative 는 줄이는 방법으로 알려져 있습니다. 이를 수리적으로 보이는 것은 다소 어렵지만 simulation 을 통해서 bonferonni 방법보다 효율적이라는 것이 많이 알려져 있습니다. Multi-step 보정 방법은 모든 검정에서 나온 p-value 를 정렬 (sorting) 한 후, 각 검정마다 각기 다른 p-value cutoff 를 적용시키는 방법입니다. Step-down 방법은 p-value 가 가장 작은 검정부터, step-up 방법은 p-value 가 큰 검정부터 귀무가설 기각 여부를 보게됩니다.
FWER 이 아닌 False Discovery Rate (FDR) 을 줄이는 방법이 최근 많이 사용되고 있습니다. FDR 을 다중검정에서 사용할 때의 의미는 false postive, false negative 를 줄이는데 집중할 것이 아니라, 내가 귀무가설을 기각한 검정 중 틀린 것 (false positive/true positive+false positive = discoveries) 의 비율을 줄이자는 것입니다. 최근 FDR 통제에 많이 쓰이는 방법 중 하나가 Benjamin-Hochberg 방법입니다. 이 방법은 FDR 를 잘 통제한다고 알려진 방법입니다.
$$ FDR = \frac{false_{positive}}{true_{positive}+false_{positive}} $$
Holm's 방법, Hochberg 방법, Benjamin-Hochberg 방법 모두 간단하며, 검색해보면 쉽게 알 수 있기 때문에 본 포스팅에서는 따로 설명하지 않고, 아래 시각적으로 설명한 그림을 첨부하였습니다. Benjamin-Hochberg 방법의 경우 이전 제 포스팅에서 설명했습니다.
<Holm's, Hochberg, Benjamin-Hochberg Procedure 의 비교>
다중 검정 보정이 필요한 상황
1. 수많은 요인들에 대한 연관성 분석을 수행할 때
이 예로는 유전체학 분야를 들 수 있습니다. genomics 분야에서 microarray 와 같은 high-throughput 기술의 발달됨에 따라, 수많은 유전자 변이 마커, 유전자 발현 (gene expression) 과 표현형의 연관성을 보는 연구가 수행되었습니다. 이러한 Genomics 분야의 발전은 다중 검정 보정이 생겨난 이유이기도 합니다. 일반적으로 한 사람에서 300만개의 단일염기다형성 (single-nucleotide polymorphism) 이 있습니다. 이러한 마커들과 질병의 연관성을 보는 연구에서 multiple comparison 문제가 생길 수 밖에 없고, 수 많은 false positive 가 생기게 됩니다. 이 분야의 default 라고 얘기할 수 있는 보정 방법은 FDR 을 통제하는 Benjamin-Hochberg 방법입니다.
2. 임상 시험
임상 시험의 수많은 상황에서 다중 비교 문제가 생기게 됩니다. 신약 개발을 예를 든다면, 아래와 같은 상황이 발생할 수 있습니다.
1) 비교 그룹 수가 3개 이상인 경우 :ANOVA 검정 후 유의해서, 사후검정을 할 때, 다중 검정이 발생하게 됩니다. 예를 들어, 대조약, 저투여군, 고투여군 3그룹을 비교할 때 생길 수 있습니다. 이러한 임상시험 세팅에서는 다중성을 반드시 보정해주어야합니다.
2) 하위군 분석 : 임상 시험 대상자를 어떤 공변량을 기준으로 하위군으로 나누어 신약의 효과를 평가할 때 발생합니다. 대표적으로 다중 검정이 발생하는 사례로, 하위군 분석 결과를 확증적으로 인정받기 위해서는 임상시험계획서에 이를 명기하고 다중검정 보정법을 제시해야합니다.
3) 중간 분석 : 임상 시험에서 시험 기간이 종료되기 전에 중간에 데이터를 오픈해서 테스트를 하는 경우도 있습니다. 이 경우도 대표적으로 다중 검정이 발생하는 사례로, 각 절차에서 O-brien fleming 방법을 사용한 다중검정 보정법이 종종 사용됩니다.
'Data science > Statistics' 카테고리의 다른 글
시계열분석 - Week stationarity/Stochastic process/Autocovariance function (0) | 2022.01.24 |
---|---|
층화 무작위배정을 실제로 하는 방법 (1) | 2019.12.16 |
변수 종류별 시각화 및 검정 방법 (0) | 2019.11.03 |
통계적 검정의 종류와 신뢰구간과 가설검정의 관계 (0) | 2019.10.26 |
모분산의 추정과 검정 (2) | 2019.10.25 |