반응형

Chip-seq 의 기초 이해 


Genome 상의 단백질을 코딩하는 부분이 아닌 지역 (non-coding region) 에서 기능적인 부분을 찾기 위한 노력들이 이루어지고 있습니다. genome 연구 초창기에는 non-coding region 이 junk DNA 즉, 아무런 기능을 하지 않는다고 잘못 알려져 있었던 적도 있지만, non-coding region 에 위치한 다양한 기능 부위 (functional elements)들은 유전자 발현에 중대한 영향을 미치며, 이것이 인간의 복잡성을 결정하는 것으로 이해되고 있습니다. 이런 의미에서 non-coding region 을 이해하는 것은 중요하며, 이를 위해 다양한 실험 데이터가 모이고 있습니다. 그 중 하나가 바로 chip-seq 데이터입니다. 





Chip-seq의 핵심



  • Chip-Seq = Chip + Next Generation Sequencing 
  • Chip = Chromatin + Immunoprecipitation 


Immunoprecipitation (면역침강반응) 어떠한 sample에서 '특정 물질' (target) 을 찾기 위해 그 특정물질의 항체 (antibody) 를 이용하는 것입니다. Chip은 Chromatin (염색질) 에 Immunoprecipitation 을 하는 것입니다. 이것이 Chromatin 에 적용되는 경우, antibody 를 이용해 DNA 에 특정 위치에 결합한 단백질 (ex. transcription factor) 을 찾을 수 있습니다. 이 부분을 침강시킨 후, NGS 기술을 이용해 시퀀싱하는 것이 Chip-seq 입니다. 


Chip-seq 의 종류 


ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions (Nature review genetics, 2012)


  • Transcription factor chip-seq 
  • Histone modification chip-seq 


Chip-seq은 크게 transcription binding site (tfbs) 를 찾기 위한 tf chip-seq 과 histone modification site 를 찾기위한 hm chip-seq 으로 나뉩니다. 두 경우 실험적으로 약간의 차이가 납니다 (위 그림 참). 또한 sequencing 이후에, 관찰되는 결과도 상당히 다른데, tf chip-seq 의 결과 나타나는 peak는 수십에서 최대 수백 서열 정도 (narrow)이지만, hm chip-seq 의 경우, 많게는 100만 서열 단위까지 길게 나타납니다 (broad peak).



Chip-seq control 


Chip-seq의 목적 중 하나는 genome 상의 특정 기능을 수행하는 부분: tfbs 또는 hm 을 찾기 위한 것입니다. 이를 chippeak finding 라 하는데, 이를 위해 control 데이터가 필요합니다. control 데이터가 필요한 이유는 간단히 말해 Chip-seq 에서 발생하는 noise 때문인데, noise 는 실험적 noise 와, 실제 생물학적 noise 로 나누어볼 수 있을 것 같습니다. 실험적 noise 의 경우, 해당 target 이 아닌 genome  상의 다른 부분이 sequencing 이 된 것입니다. 약 80~90 % 정도가 target 이 아닌데도 sequencing 이 된 부분 입니다. 이를 background noise 라고도 부릅니다. 생물학적인 noise 의 경우, genome 상의 특정 부분 예를 들어 repetitive sequence 가 있는 부분은 실험적인 이유에서가 아니라 그냥 reference genome 에 alignment 가 잘 되기 때문에 peak 처럼 보이기도 합니다. 따라서 이러한 noise 들을 보정하기 위해 control 데이터가 필요합니다. 


control 데이터는 크게 "input"과 "mock" 으로 나뉩니다. 


  • input: cross-link와 sonication 은 됐는데, immunoprecipitation 안된 것 
  • mock: IgG 라고하는 특별한 항체를 이용해 genome 상의 random 한 부분이 immunoprecipitation 되도록한 것 


이 중에서 일반적으로 input 이 control 로 많이 쓰입니다. 



Peak Finding


Chip-seq 도 NGS 이기 때문에, 최종 결과로 fastq 파일이 나옵니다. 이를 reference genome 에 alignment 를 해서 bam 파일이 나오게 되는데, 이 bam 파일에서 chip-seq 의 한가지 목적 = functional region 찾기를  하기 위한 것 peak finding 입니다. peak 가 있는 부분은 더 많이 sequencing 이 되었다는 것이고, chip-seq 에서 immunoprecipitation 이 많이 된 부분이기 때문에 알고자 하던 부분 (tfbs, hm)일 가능성이 크기 때문입니다. peak finding 을 할 때 여러가지 이슈가 있기 때문에 여러 복잡한 알고리즘들이 많이 쓰입니다. 이러한 알고리즘을 종합해서 구현해 놓은 tool 중 가장 많이 쓰이는 것이 MACS2 라는 Tool 입니다. Chip-seq 의 경우, single-end sequencing 이기 때문에 strand-dependant bimodality 의 문제가 생기는데, MACS 에서는 이를 보정하기 위한 shifting 모델을 사용하고, local dynamic 파라미터를 활용한 포아송 분포 모델을 통해 특정한 크기를 갖는 window로 genome 을 훑으며 통계적으로 유의한 지역 (peak) 을 찾습다. 


참고

http://epigenie.com/wp-content/uploads/2013/02/Getting-Started-with-ChIP-Seq.pdf

반응형

'Domains > Bioinformatics' 카테고리의 다른 글

Samtools, Bcftools 설치 방법  (1) 2018.05.14
GATK4 설치  (0) 2018.02.20
Chip-seq 데이터를 통한 binding motif 분석 [rGADEM]  (0) 2018.01.13
Variant calling 이란?  (0) 2017.11.20
IGV Tutorial [BAM File]  (0) 2017.10.16