다중 비교 (Multiple comparison) 문제와 보정 방법 


본 포스팅에서는 다중 비교가 무엇인지, 어떤 방법으로 보정할 수 있는지를 알아보겠습니다. 다중 분석이 문제가 된다는 점을 이해하기 위해 먼저 예를 설명하겠습니다.폐암과 연관성이 있는 요인을 찾기 위한 연구를 수행한다고 해봅시다. 예를 들어, 나이, 체질량 지수, 식습관, 음주습관, 운동량 등 100 가지의 요인에 대해 폐암과의 연관성을 유의 수준 0.05 하에서 비교하고자 합니다. 이를 위해 폐암 환자와 정상인을 수집했고, 연속형 변수에 대해서는. T-test, 범주형 변수는 카이제곱 검정을 수행하여 최종적으로, 운동량, BMI, 학력, 우유 섭취량, 경제력이 폐암과 연관성이 있다고 나왔다고 합시다. 이 때, 이 변수들이 폐암과의 연관성이 있다고 결론 내릴 수 있을까요? 물론 각각의 검정은 유의 수준 0.05 하에서 검정한 것이기 때문에, 연관성이 실제로 있을 가능성이 높은 것이 사실입니다. 하지만 100가지 요인에 대한 검정을 하나의 연구로 볼 때, 모든 변수가 연관성이 실제로 없더라도 평균적으로 5개의 잘못된 결과를 얻게 됩니다. 만약에 이러한 잘못된 결론이 학계에 보고되면 잘못된 과학적 결론을 내릴 수 있습니다. 따라서, 개별 검정 뿐 아니라 한 연구의 에러를 줄이는 방법이 필요합니다. 즉, 한 연구에서 나올 수 있는 잘못된 결과를 줄이자 라는 것이 다중검정 보정의 핵심입니다. 


여기서 family-wise type 1 error 의 개념이 등장합니다. Family-wise type 1 error rate (FWER) 란 한 연구에서 적어도 한 개의 잘못된 결론 (false positive)이 나올 수 있는 확률을 의미합니다. 만약 이것이 0.05 라면 한 연구에서 적어도 1개의 잘못된 결론이 나올 확률이 0.05 라는 것입니다. FWER 를 통제하는 방법으로 잘 알려진 것이 본페로니 보정 방법입니다. 본페로니 보정은  test 의 수가 n 이고, FWER 를 0.05 로 통제할 때, 개별 테스트의 유의수준을 alpha/m 으로 설정시킵니다. 모든 검정이 실제로 연관성이 없는 경우 (null 인 경우), 아래 식이 m 이 클 수록 대략적으로 만족됩니다. 


$$ FWER= 1-(1-\alpha/m)^m = \alpha  $$


<본페로니 방법을 통한 FWER 통제>


하지만 본페로니 방법의 문제는 너무 보수적 (strict/conservative) 이라는 것입니다. 보수적이라는 뜻은 귀무가설을 웬만해선 기각하지 않는다는 것으로, false positive 는 상당히 줄일 수 있지만, false negative 는 많아지게 됩니다. 예를 들어 test 의 개수가 1000개인데, 연관성이 없는 것이 900개, 연관성이 있는 것이 100개 일 때, 900개 중에 1개라도 잘못나올 확률은 1-(1-0.05/1000)^900 < 0.05 입니다. 물론 false positive 가 적어져서 좋긴 하지만, false negative 가 많아진다는 문제가 생깁니다. 따라서, 다중 비교 검정의 핵심은 어떻게 false positive 를 줄이면서, false negative 도 줄일 수 있는가? 입니다.


다중 검정 보정 방법


그러면 어떻게 false positive, false-negative 의 타협을 보는가 (FWER 은 본페로니 수준이면서, false negative 를 줄일 수 있는가)에 문제에 있어서 도입되는 한 가지 방법이 바로 multi-step 보정 방법입니다. Multi-step 보정법은 step-down 방법, step-up 방법으로 나뉘는데, 예를 들어, step-down 방법은 Holm's 방법, step-up 방법은 Hochberg 방법이 있습니다. 이러한 multi-step 보정 방법은 fwe 는 그대로 두면서 false negative 는 줄이는 방법으로 알려져 있습니다. 이를 수리적으로 보이는 것은 다소 어렵지만 simulation 을 통해서 bonferonni 방법보다 효율적이라는 것이 많이 알려져 있습니다. Multi-step 보정 방법은 모든 검정에서 나온 p-value 를 정렬 (sorting) 한 후, 각 검정마다 각기 다른 p-value cutoff 를 적용시키는 방법입니다. Step-down 방법은 p-value 가 가장 작은 검정부터, step-up 방법은 p-value 가 큰 검정부터 귀무가설 기각 여부를 보게됩니다. 


FWER 이 아닌 False Discovery Rate (FDR) 을 줄이는 방법이 최근 많이 사용되고 있습니다. FDR 을 다중검정에서 사용할 때의 의미는 false postive, false negative 를 줄이는데 집중할 것이 아니라, 내가 귀무가설을 기각한 검정 중 틀린 것 (false positive/true positive+false positive = discoveries) 의 비율을 줄이자는 것입니다. 최근 FDR 통제에 많이 쓰이는 방법 중 하나가 Benjamin-Hochberg 방법입니다. 이 방법은 FDR 를 잘 통제한다고 알려진 방법입니다. 


$$ FDR = \frac{false_{positive}}{true_{positive}+false_{positive}} $$


Holm's 방법, Hochberg 방법, Benjamin-Hochberg 방법 모두 간단하며, 검색해보면 쉽게 알 수 있기 때문에 본 포스팅에서는 따로 설명하지 않고, 아래 시각적으로 설명한 그림을 첨부하였습니다. Benjamin-Hochberg 방법의 경우 이전 제 포스팅에서 설명했습니다.



 

<Holm's, Hochberg, Benjamin-Hochberg Procedure 의 비교>



다중 검정 보정이 필요한 상황


1. 수많은 요인들에 대한 연관성 분석을 수행할 때


이 예로는 유전체학 분야를 들 수 있습니다. genomics 분야에서 microarray 와 같은 high-throughput 기술의 발달됨에 따라, 수많은 유전자 변이 마커, 유전자 발현 (gene expression) 과 표현형의 연관성을 보는 연구가 수행되었습니다. 이러한 Genomics 분야의 발전은 다중 검정 보정이 생겨난 이유이기도 합니다. 일반적으로 한 사람에서 300만개의 단일염기다형성 (single-nucleotide polymorphism) 이 있습니다. 이러한 마커들과 질병의 연관성을 보는 연구에서 multiple comparison 문제가 생길 수 밖에 없고, 수 많은 false positive 가 생기게 됩니다. 이 분야의 default 라고 얘기할 수 있는 보정 방법은 FDR 을 통제하는 Benjamin-Hochberg 방법입니다. 


2. 임상 시험 


임상 시험의 수많은 상황에서 다중 비교 문제가 생기게 됩니다. 신약 개발을 예를 든다면, 아래와 같은 상황이 발생할 수 있습니다. 


1) 비교 그룹 수가 3개 이상인 경우 :ANOVA 검정 후 유의해서, 사후검정을 할 때, 다중 검정이 발생하게 됩니다. 예를 들어, 대조약, 저투여군, 고투여군 3그룹을 비교할 때 생길 수 있습니다. 이러한 임상시험 세팅에서는 다중성을 반드시 보정해주어야합니다. 


2) 하위군 분석 : 임상 시험 대상자를 어떤 공변량을 기준으로 하위군으로 나누어 신약의 효과를 평가할 때 발생합니다. 대표적으로 다중 검정이 발생하는 사례로, 하위군 분석 결과를 확증적으로 인정받기 위해서는 임상시험계획서에 이를 명기하고 다중검정 보정법을 제시해야합니다. 


3) 중간 분석 : 임상 시험에서 시험 기간이 종료되기 전에 중간에 데이터를 오픈해서 테스트를 하는 경우도 있습니다. 이 경우도 대표적으로 다중 검정이 발생하는 사례로, 각 절차에서 O-brien fleming 방법을 사용한 다중검정 보정법이 종종 사용됩니다.

아이패드 에어 3세대 + 애플펜슬 1세대 후기


구매목록 


  • 애플펜슬 1세대
  • 아이패드 에어 3세대 64GB, WIFI
  • 뷰씨 퓨어슬림 케이스
  • 뷰씨 애플펜슬 수납 자카드 케이스 

아이패드+펜슬+케이스 전부 다 해서 총 71만원 정도에 구입하였습니다. 이후에 힐링쉴드 스케치 필름을 3만원 주고 힐링실드 신림점에서 부착하였습니다. 







아래는 뷰씨 퓨어슬림 케이스를 장착한 모습입니다. 뷰씨에서 구입한 두 케이스 모두 만족중입니다. 매우 슬림한 케이스라 수납에 편리하고 가볍습니다. 






전반적인 후기


아이패드 없이 살았던 시간이 아쉬울 만큼 만족하고 있습니다. 특히 pdf 파일로된 자료나 책, 논문 등을 읽어야할 일이 많은데, 일일히 자료를 프린트 하지 않고 어플을 이용해 읽고, 요약할 수 있다는 것이 이렇게 편리하다라는 것을 실감하고 있습니다. 개인적으로 대학생, 대학원생 필수템이라고 생각합니다. 


아이패드 에어의 필기감


개인적으로 아주 만족합니다. 지인의 프로 2세대로 필기를 해봤었는데, 에어3와 프로2는 개인적으로 필기감의 차이가 크지 않은 것 같습니다. (다만 프로 3세대는 이용해보지 않아서 프로 3 과의 차이는 잘 모르겠습니다.) 저는 힐링쉴드 스케치 필름을 이용 중인데 확실히 생패드에 필기하는 것과 종이질감 필름에 필기하는 것은 차이가 큰 것 같습니다. 필기에 주로 활용하시는 분은 종이질감 필름 부착을 강추합니다. 


추천앱

- 리퀴드텍스트 (LiquidText) 



pdf 파일 형태의 책, 논문을 읽기 좋은 앱입니다. 저는 읽으면서 나름대로 요약하는 것을 좋아하는데 이러한 목적에 잘 맞는 앱이라고 생각합니다. 저와 비슷하신 분은 추천합니다. 다만 클라우드와의 연동이 어렵다는 점은 단점입니다. 폴더 백업이 안돼서 파일 단위 백업을 해야하고, 자동 파일 백업 기능이 있는데, 기존 파일을 덮어쓰지 않고 새로운 파일을 생성해버립니다..;; 또한 큰 파일에서 버벅인다는 단점이 있네요. 하지만, 장점도 많기에 저는 만족하며 사용하고 있습니다. 

'My Logs' 카테고리의 다른 글

Wallpaper 콜렉션 사이트  (0) 2020.02.02
아이패드 에어 3세대, 애플펜슬 1세대 후기  (0) 2019.12.08
2018 한국 PyCon Tutorial 후기  (4) 2018.08.17

Ubuntu 에 Python 새로운 버전 설치하기


sudo apt update
sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev wget

필요한 패키지를 받습니다. 


cd /tmp wget https://www.python.org/ftp/python/3.7.2/Python-3.7.2.tar.xz


설치파일을 다운로드 받습니다. 


tar -xf Python-3.7.2.tar.xz cd Python-3.7.2 ./configure --enable-optimizations


설치 파일의 압축을 풀고, 인스톨 준비를 합니다. 


make -j 1
sudo make altinstall

-j 1 은 1 개의 CPU 를 이용해서 build 하겠다는 것입니다.포인트는 sudo make altinstall 을 통해 버전을 따로 관리하는 것입니다. sudo make install 을 하면, 기존 파이썬을 덮어써버리게 되므로 주의해야합니다. 이후, 커맨드 창에 python3.7 을 입력해 잘 설치되었는지 확인합니다. 


특정 버전에 pip 를 통해 패키지 설치하는 법 

예를 들어, beatifulsoup4 패키지를 설치하려면 아래와 같이 합니다. pip 자체가 파이썬 코드이기 때문에 이런식으로 원하는 파이썬 버전을 통해 pip 를 실행시켜주면 됩니다. 

python3.7 -m pip install beautifulsoup4

References
https://websiteforstudents.com/installing-the-latest-python-3-7-on-ubuntu-16-04-18-04/



잘 정리된 사이트가 있어 공유합니다. H-index 기준 1위 CVPR, 2위 NIPS, 3위 EECV, 4위 ICML, 5위는 얼마전 서울에서 열렸던 ICCV 네요. 





무엇을 기준으로 한지는 잘 모르겠으나, 아래와 같이 Conference 와 Journal 의 Rank 를 분류한 자료도 있습니다. SIGIR, WWW, ACL, KDD, AAAI, IJCAI, ICML, NIPS, ICLR가 아래 기준 Rank 1 에 속한 conference 들입니다. 


Conference Ranking 

Read all the relevant papers from major top proceedings/journals. Read, read and read! 
Find new ideas, Do solid research, Publish top papers, Get professional internships/jobs! 
Rank 1 (CCF-A): SIGIR, WWW, ACLKDD, AAAI, IJCAI, ICML, NIPS, ICLR.
Rank 2 (CCF-B): CIKM, WSDMEMNLP.
Rank 3 (CCF-C): ECIR, NAACL.
SIGIR-sponsored conferences:  SIGIR, CIKM, WSDMICTIR, CHIIR.
A better computer science department ranking list based on top conference publications: http://csrankings.org.

Best Paper Awards in Top Computer Science Conferences 
Best Papers vs. Top Cited Papers in Computer Science (since 1996)
Google CS Conference&Journal Ranking (IR&Search&Web&DB)
Google CS Conference&Journal Ranking (Core IR)
Google CS Conference&Journal Ranking (NLP)
Google CS Conference&Journal Ranking (DM)
Google CS Conference&Journal Ranking (ML&AI)

Most Cited Papers in Top Conferences in Recent 5 Years:
IR/Web: SIGIR, WWW, CIKM, WSDM
NLP: ACL, EMNLP, NAACL
ML/DM: ICML, NIPSKDDAAAI, IJCAI, ICLR
Most Cited Computer Scientists by H Index
Citations Statistics of Top Computer Science Researchers by Prof. Jimmy Lin
Number of submissions and acceptance rate of NLP conferences

Journal Ranking 

Rank 1

Rank 2
  • ACM Transactions on Intelligent Systems and Technology(TIST)
  • Information Processing & Management (IPM)
  • Information Retrieval (IRJ)
  • Journal of the American Society for Information Science and Technology (JASIST)


참고


https://sites.google.com/site/lyangwww/resources?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F&showPrintDialog=1

http://www.guide2research.com/topconf/machine-learning

https://jackietseng.github.io/conference_call_for_paper/conferences.html

  • morningpig 2020.07.19 02:50

    논문 보는 곳을 찾고 있었는데 정말 감사합니다

딥러닝 분야별 State-of-the-art (SOTA) 브라우저


딥러닝 분야 (Image Classification, Semantic Segmentation, Object Detection, Medical 등) 별 SOTA 알고리즘을 확인할 수 있는 사이트를 찾게 되어 공유합니다. Data set 별로 가장 성능이 좋은 방법들을 나열해놓고 있습니다. 최신 기술의 업데이트를 한 곳에서 확인할 수 있어 매우 유용한 사이트인것 같습니다. Semantic Segmentation 분야의 경우, DeepLab 이 최신 기술이라고 알고 있었는데 이외에도 들어보지 못한 ACNet, HRNet 등의 방법들도 좋은 성능을 내고 있네요.

https://paperswithcode.com/sota?fbclid=IwAR16wLSr-BAcl-eZAwMVIHdsmpgBF6dN4ETR5kRGg02f_5xBBOlN6uMapo4


일반 Softmax 함수 


import tensorflow as tf
import numpy as np

z = [1,2,3,4,5,6]

def softmax(a) : 
    c = np.max(a) 
    exp_a = np.exp(a-c) 
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
    return y

q = softmax(z)


Softmax with Temperature Parameter


def softmax_with_temperature(z, T) : 
    z = np.array(z)
    z = z / T 
    max_z = np.max(z) 
    exp_z = np.exp(z-max_z) 
    sum_exp_z = np.sum(exp_z)
    y = exp_z / sum_exp_z
    return y

calibrated_q2 = softmax_with_temperature(z, 2)
calibrated_q10 = softmax_with_temperature(z, 10)


Temperature 를 크게 줄 수록 각 확률 값들의 차이가 줄어듬을 확인할 수 있음

하지만, 순서는 변하지 않기 때문에 정확도에 영향을 주지 않음 


fig = sns.barplot(x=np.array([0,1,2,3,4,5]), y=q)
fig.set(ylim=(0,1))
plt.show()

fig2 = sns.barplot(x=np.array([0,1,2,3,4,5]), y=calibrated_q2)
fig2.set(ylim=(0,1))
plt.show()

fig3 = sns.barplot(x=np.array([0,1,2,3,4,5]), y=calibrated_q10)
fig3.set(ylim=(0,1))
plt.show()


[논문리뷰] 현대 딥러닝의 Calibration 에 대하여



현대 Neural network 의 calibration 에 관하여라는 논문을 리뷰하여 포스팅하겠습니다. 딥러닝의 성능 (performance) 이라 하면 일반적인 용어 '정확도' 를 뜻하는 경우가 많습니다. 그 정확도란 1) 예측 한 것중에 얼마나 맞았는가? 2) 데이터가 얼마나 잘 분류가 되었는가? 두 관점이 있으며, accuracy, precision (positive predictied value), recall (sensitivity)f1-score (precision 과 recall 의 조화평균) 등 대표적이고 많이 사용되는 measure 라고 할 수 있습니다. 하지만 calibration 도 정확도 못지 않게 중요한 성능이라고 할 수 있습니다. 본 논문에서는 '현대 뉴럴넷' 이 과거의 뉴럴넷보다 정확도는 향상되었지만, calibration 이 좋지 않다 (poorly calibrated) 라는 점을 문제로 삼으며, post-processing calibration method temperature scaling 을 제시하고 있습니다.


Calibration 이란?


Calibration 이란 모형의 출력값이 실제 confidence (또는 이논문에서 calibrated confidence 로 표현) 를 반영하도록 만드는 것입니다. 예를 들어, X 의 Y1 에 대한 모형의 출력이 0.8이 나왔을 때, 80 % 확률로 Y1 일 것라는 의미를 갖도록 만드는 것입니다. 일반적으로 현대 딥러닝은 overconfident 합니다. 아래 그림은 1998 년 제시된 LeNet 과 2016년 제시된 ResNet (110 layer) 의 calibration 을 비교한 그림입니다. LeNet 의 경우 모형의 출력이 0~1 사이에 균일하게 분포되어있는 것을 볼 수 있지만, ResNet 의 경우 1 근처에 집중되어 있다는 것을 볼 수 있습니다. 그 결과로 아래 그림을 보면, ResNet 의 경우, confidence 와 accuracy가 많이 어긋난다는 것을 볼 수 있습니다. 모형의 출력이 실제 confidence 를 반영한다면 (calibrated confidence), confidence 와 accuracy 가 일치해야합니다. 


왜 Calibration 이 중요한가? 


모형의 예측값이, 실제 확률을 반영하는 것 (Calibration) 은  중요합니다. 딥러닝이 실제 세계에 응용될 때, 의사결정 프로세스의 하나의 구성요소가 되는 경우가 많습니다. 예를 들어, 의학적 진단 (computer-aided diagnosis)을 예로 들어보면, 딥러닝을 전적으로 신뢰해서 모든 판단을 딥러닝에 맡기는 식으로 의사결정이 이루어지는 경우는 적습니다. 딥러닝 모델의 confidence 가 낮은 경우에만 사람이 보는 방식으로 사람의 노동력을 줄이거나, false negative 가 치명적인 암 진단과 경우에는, cancer negative 로 예측한 것들 중, confidence 가 낮은 것만 사람이 재확인 하는 방식으로 하는 것도 가능합니다. 결국 이러한 의사 결정이 가능하기 위해서는 모형의 confidence 를 보는 것이 필요하고 이 confidence가 calibrated confidence 여야지 그 값에 신뢰성이 있다고 할 수 있습니다. 


Calibration Measures


모형의 Calibration 이 잘되었는지를 어떻게 확인할 수 있을까요? 논문에 나와있는 3가지 measure 를 정리해보았습니다. 


1) Reliability Diagram


Reliability diagram 은 expected accuracy 와 observed accuracy 를 각각 x, y 축으로 하여 그린 그래프를 말합니다. 이 때, expected accuracy (confidence) 를 기준으로 bin 을 쪼개서 (ex. decile) 각 bin 에서 observed accuracy 를 아래와 같이 구함으로써 그래프를 그릴 수 있습니다. 




파이썬 코드로 Reliability diagram 그리는 법을 참고 바랍니다. 


2) Expected Calibration Error (ECE) 



ECE 는 confidence와 실제 accuracy 의 차이의 기댓값으로 연속형 변수에서 이를 실제로 구할 수 있는 방법은 없습니다. 따라서 "binning" 을 통해 위와 같이 approximation 됩니다. ECE는 M 개의 bin 에 대하여 각 bin 마다의 expected accuracy 와 confidence 의 차이를 가중 평균 (weighted mean) 한 것입니다. 이 때 가중치는 위 식에 나와있듯, bin 의 sample size / 전체 sample size 입니다. 



3) Negative log likelihood



Negative log likelihood 는 통계 모형의 quality 를 평가하는데 표준적으로 많이 쓰이는 measure 입니다. 딥러닝/머신러닝 분야에서는 cross-entropy loss 라고도 불립니다 (분류 문제에 있어서). 이러한 log likelihood 와 cross-entropy 와의 관련성은 제 블로그 포스팅에서도 다룬적이 있으니 참고 바랍니다. Logistic regression 은 이 negative log likelihood 를 최소화 하는 계수를 찾게되며, 딥러닝도 cross-entropy 를 손실함으로 놓는다면, 마찬가지입니다. NLL 은 calibration 을 의미하는 measure 로 보기는 어려우나, calibration 도 어느정도 반영하고 있다고 볼 수 있습니다.  



현대 딥러닝 기법과 Calibration 의 관계


본 논문에서는 Model capacity 와 Regularization 방법이 miscalibration 과 관계가 있다는 실험 결과를 제시하고 있습니다. 하지만 이 부분에 대해 인과성을 단정할 수는 없습니다. 


1) Model capacity


최근 등장하는 딥러닝 모형들은 매우 많은 layer 를 갖고 있습니다. 적게는 수백개에서부터 수천개의 layer 가 있으며, layer 마다 수백개의 convolution filter 가 사용됩니다. 최근 연구에 따르면, 많은 layer 를 가질 수록 traninig set 의 특징을 더욱 잘 학습하고, generalization 도 더 좋다는 것을 보여주었습니다. 



위 figure 에서 가장 왼쪽 그림은 ResNet 에 대하여 64개의 filter 로 고정 후, depth 를 올리면서 error와 ece를 관찰한 그림입니다. depth 가 증가할 수록 error 는 줄어들지만 ECE는 증가하는 것을 확인할 수 있습니다. 왼쪽에서 두 번째 그림은 depth 를 고정시킨 후, filter 의 수를 증가시키면서 error와 ece 를 관찰한 것인데, 마찬가지로 error는 줄어들지만 ece 는 증가합니다. 후반부에는 유지되지만 초반부에 매우 빠르게 ece 가 증가하는 것을 확인할 수 있습니다. 즉, model capacity 가 클 수록 ece는 증가합니다. 이 이유는 모델이 training set 에 대한 loss 를 최소화하는 방향으로 학습되기 때문입니다. 그렇기 때문에 training set 을 완벽하게 분류할 수 있기 되더라도 loss 를 줄이기 위하여 confidence 를 높여 1에 가까운 값을 예측하기 때문입니다. 따라서 test set 에 대해 예측할 때도 마찬가지의 현상을 보이게 됩니다.  


2) Batch Normalization (BN)


Batch normalization 방법은 distribution shifts in activations 을 최소화해서 딥러닝의 optimization 및 regularization 을 향상시키는 방법입니다. batch normalization 의 도입은 매우 깊은 모델 (resnet, densenet 과 같은) 을 학습시킬 수 있는 한 가지 breakthrough 였습니다. 위 figure 의 3번째 그림을 보면 BN 이 calibration 에 미치는 영향을 볼 수 있습니다. 결론은 BN 의 도입은 calibration 을 낮추며, 원인은 알 수 없다는 것입니다. 


3) Weight decay 


BN 의 도입 이후 최근 weight decay 가 많이 쓰이지 않는 regularization 방법입니다. BN 논문에서 L2 regularization 를 쓰지 않는게 일반화에 도움이 된다는 내용이 보고되기도 했습니다. 따라서 최근에는 weight decay 를 과거와 비교하여 매우 작게 주는 것이 일반적입니다. 하지만 안타깝게도 이것은 calibration 에 좋지 않은 영향을 준다고 합니다. 위 figure의 가장 오른쪽 그림을 보면 weight decay 를 크게 줄 수록 오히려 ece 가 좋아지며, weight decay 가 적을 수록 ece 가 증가합니다. 직관적으로도, weight decay 가 적으면 training set 에 대해 loss 를 최소화 시키는 weight 가 얻어지는 것이기 때문에 test set 에 대해 overconfident 한 모델이 얻어질 것이라는 것을 짐작할 수 있습니다. 


Calibration 방법 


Post-processing calibration 은 모델의 예측 확률로부터 Calibrated probability 를 구하는 과정입니다. 이 방법은 validation set 이 필수적으로 필요합니다 (물론 이 validation set 은 training 할 때 쓰인 validation set 과 같은 set 이어야 합니다.).


Post-processing calibration의 목적은 모델의 예측값 p 로부터 calibrated probability q 를 구하는 것입니다. 간단하게 positive class, negative class 로 나뉘어진 binary prediction 을 예로 들어봅시다. 첫 번째로 소개할 방법은 Histogram binning 방법입니다. 


1) Histogram Binning : Zadrozny 는 2001 년 ICML 에서 decision trees and naive bayesian classifier 의 예측값을 calibration 하는 방법을 제시했습니다. Histogram binning 은 매우 간단하고 직관적인 calibration 방법으로 non-parametric calibration 방법입니다. 절차는 아래와 같습니다. 


1) 예측값을 M 개의 bin 으로 쪼갭니다. bin 을 쪼개는 방법은; 1. 같은 interval 로 쪼개기 2. sample 수로 쪼개기가 있습니다. 

2) 이후에 Bin 마다 Score 를 구합니다. 

3) Score 는 bin-wise squared loss 를 최소화하는 방법으로 선택됩니다. 


* Bin-wise squared loss


여기서 1은 indicator function 입니다. 이를 최소화하는 theta1~theta_m 을 구해서 이를 bin 마다의 score로 쓰는 것입니다. 위 식을 최소화하면 결국 스코어는 해당 bin 에서의 positive-class 의 비율이 됩니다. 즉, histogram binning 방법은 예측값을 binning 한 후, 각 bin 에서의 positive-class 의 비율로 확률을 재할당하는 것으로 이해할 수 있습니다. 


2) Platt scaling: Platt scaling 은 1999년 Platt 이 제시한 방법으로 SVM 의 출력을 '확률화' 하기 위한 방법으로 제시되었습니다. Platt scaling 은 histogram binning 과는 다르게 parametric 방법입니다. 최초로 제시된 이 방법에서는 모형의 출력을 logistic regression 의 input 으로 넣습니다. 뉴럴넷의 경우, 최종 모델의 출력값이 sigmoid 되기 전의 값 z 를 아래와 같이 변환합니다. 


$$ q_i = \sigma(az_i + b) $$


이 때, a, b 는 validation set 에 대해서 NLL (=binary cross entropy) 을 최소화 시키는 방향으로 학습이 됩니다. 당연하지만 이 과정에서 학습된 뉴럴넷의 weight는 영향을 받지 않습니다. 



3) Temperature scaling: Temperature scaling 은 Platt scaling 에 기초한 방법입니다. K 개의 label 이 있는 다중 분류 문제에서 Temperature scaling 방법에서는 단일 scalar parameter T 를 이용해 logit vector z 를 아래와 같이 변환합니다. 



본 논문의 저자는 T 를 temperature 라고 부릅니다. T 는 soft max function 을 "soften" 시키는 일을 합니다. T 가 커질 수록 최종 calibrated probability q 는 1/K 로 수렴합니다 (이것은 uncertainty가 극대화 된다는 의미입니다). 식을 보면 T 가 1일 때가 원래 softmax를 이용하여 confidence 를 구하는 방법이라는 것을 알 수 있습니다. T는 validation set 에 대해 NLL 을 최소화 하는 식으로 optimization 하는 방법입니다. T 의 장점은 argmax 를 바꾸지는 않는다는 것입니다. 즉, T 는 모델의 정확도에는 영향을 주지 않고, Calibration 에만 영향을 줍니다. 


참고

https://arxiv.org/pdf/1706.04599.pdf

https://machinelearningmastery.com/calibrated-classification-model-in-scikit-learn/

  • GyeongHo Kim 2020.09.17 00:51 신고

    덕분에 좋은 논문의 좋은 해석을 보았습니다. 감사합니다

  • soom 2020.11.24 15:12

    관련 자료 검색 중 오게 됐습니다. 설명 감사합니다.

  • soom 2020.11.24 15:12

    관련 자료 검색 중 오게 됐습니다. 설명 감사합니다.

변수 종류별 시각화 및 검정 방법


얼마전, 변수 종류별로 사용할 수 있는 시각화 및 검정 방법을 간단하게 요약한 표를 발견해 공유합니다. 출처는 이곳 입니다. 표를 그린 기본 아이디어를 보면, 종속변수를 Binary, Nominal, Ordinal, Interval, Normal, Censored Interval 으로 나누었습니다. 독립변수의 경우, Binary Categorical (Paired/Unpaired), Categorical (Paired/Unpared), Normal, Multivariate 으로 나누었습니다. 이 때, ordinal 의 경우, 연속형 범주로 또는 범주형 변수 상황에 따라 둘 다 가능합니다.


그래프의 경우 요약하면, Barplot, Boxplot, Scatter plot 이 기본입니다. 카테고리x카테고리 = Barplot, 카테고리x연속형 = Box plot, 연속형x연속형 = Scatter plot 으로 기본적으로 그리면 됩니다. 여기서 Box plot 의 경우 전통적인 통계에서 많이 쓰이는 그래프이지만, Histogram with different colors or side by side 또는 violin plot 도 선호됩니다. 


대부분의 기초 통계에서 배우는 검정은 대부분 이 표안에 속해있습니다. 검정에서 하고자 하는 것은 변수 X와 변수 Y 가 연관성이 있는가? 입니다. 검정도 마찬가지로, X와 Y의 종류에 따라 다양하게 존재합니다. 아래표의 대부분의 검정은 기초 통계에서 배우는 내용입니다. Paired data 에 적용하는 맥니마 검정은 설문지/심리학 연구 등에 자주 사용되는 통계적 검정 방법인데 이전 제 포스팅에서 다루었습니다. 코크란의 Q test는 맥니마 검정의 확장으로 종속변수가 두 개 이상일 때 사용하는 통계적 검정 방법입니다. 


출처

https://www.r-bloggers.com/overview-of-statistical-tests/

예측값을 변수로 활용하는 앙상블 테크닉 Blending


Blending 은 Ensemble 의 한 종류입니다. Ensemble 이란 예측 모형을 통합해서 하나의 예측을 수행하는 것을 말합니다. Ensemble 의 묘미는 서로 다른 예측 모형들을 합쳐 더 강한 예측 모형을 만들 수 있다는 것입니다다. 가령 정확도 0.7, 0.7 인 모델 두 개를 합쳐서 0.9 을 만들 수 있습니다. 본 포스팅에서는 Ensemble 의 한 가지 종류인 Blending 에 대해 설명해보려고 합니다. 



Blending 의 프로세스  


1. Traning/Validation/Test set 을 나눈다. 

2. Training set 에 모델 피팅을 한다. 

3. Validation/Test set 에 대해 예측을 한다. 

4. Validation set 과 Validation set 에 대한 예측이 새로운 모델을 만드는 데에 사용된다.

5. 4의 모델을 최종 Test set 에 대한 예측을 하는데 사용된다. 


조금 더 명확하게 보기 위해 Blending 을 활용한 코드를 보면서 설명을 하겠습니다. 아래 코드는 Decision tree 와 KNN 을 활용해 각각 validation set 과 test set 에 대한 예측을 수행하는 코드입니다. 


Blending 구현 - 파이썬 

참고 (https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-for-ensemble-models/)

model1 = tree.DecisionTreeClassifier()
model1.fit(x_train, y_train)
val_pred1=model1.predict(x_val)
test_pred1=model1.predict(x_test)
val_pred1=pd.DataFrame(val_pred1)
test_pred1=pd.DataFrame(test_pred1)

model2 = KNeighborsClassifier()
model2.fit(x_train,y_train)
val_pred2=model2.predict(x_val)
test_pred2=model2.predict(x_test)
val_pred2=pd.DataFrame(val_pred2)
test_pred2=pd.DataFrame(test_pred2)


아래 코드는 validation set 의 예측 결과 (Decision tree, KNN) 을 원래 feature 에 붙여서 새로운 데이터셋 df_val 을 만든 후, Final prediction model (이 예제에서는 Logistic regression model) 을 적합시키고, test set 에 대한 예측을 수행하는 것입니다. 

df_val=pd.concat([x_val, val_pred1,val_pred2],axis=1)
df_test=pd.concat([x_test, test_pred1,test_pred2],axis=1)

model = LogisticRegression()
model.fit(df_val,y_val)
model.score(df_test,y_test)


Blending 과 Stacking 의 차이점


Blending 은 종종 다른 Ensemble technique 인 Stacking 과 비교가 됩니다. Stacking 은 다른 예측 모형들의 결과값을 통해 새로운 모델을 만드는 Ensemble 방법입니다. Stacking 의 경우는 Training set 의 예측값을 Training data 로 하여 Meta classifier (또는 Meta regression) 을 학습합니다. 그리고 이 Meta classifier 를 통해 Test set 을 예측합니다. Blending 과 Stacking 의 차이점은 1) Blending 은 validation set 에 대한 예측값을 training 에 이용하지만, Stacking 은 training set 에 대한 예측값을 활용합니다. 2) Blending 을 예측값 뿐 아니라 원래 Feature 도 활용하는 반면, Stacking 은 예측값만 활용합니다. 그러면 이러한 의문이 남습니다. 왜 validation set 만 활용해서 Final prediction model 을 구축해야하는가? Training Set 에의 feature에 Training set 으로부터 예측한 예측값을 붙여서 활용하면 되지 않는가? 입니다. 만약 training performance 와 validation performance 가 비슷하다면 가능한 방법입니다. 하지만 training performance 가 높다면, feature 가 예측에 별로 필요하지 않게 됩니다. 따라서 feature를 예측에 활용하는 blending 의 장점이 없게 됩니다. 따라서 blending 을 잘활용하기 위해서는 validation set 의 meta-feature (원래 feature 및 예측값) 을 통해 training 하고, test set 에 대해 성능을 최종 평가해야합니다. 


참고

https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-for-ensemble-models/

https://machinelearningmastery.com/implementing-stacking-scratch-python/


R 에서 한글 파일 쉽게 읽어오는 팁


운영체제 별로 다른 파일 인코딩으로 저장되는 문제로 인해, R 에서 한글이 인코딩 된 파일을 읽어올 때 문제가 자주 생깁니다. 아예 읽어오지 못하는 경우도 있고, 읽어와도 프린트 했을 때, 한글이 깨져 있는 경우가 많은데요. 특히 EUC-KR 로 인코딩 된 파일의 경우, data.table의 fread 나 readr의 read_csv 를 이용하기가 힘듭니다. 


이런 상황에서 readAny 패키지의 read.any 함수를 이용하면 delimeter 로 구분된 text 파일이나, csv 파일 등을 쉽게 읽어올 수 있습니다 (또는 패키지 설치를 하지 않고 함수를 변수로 저장한 다음 사용하셔도 됩니다). 출처는 이곳입니다. readr 패키지의 guess_encoding 함수를 이용해 파일 인코딩을 알아낸 후, 이 정보를 이용해 read.table 로 읽어오는 방식입니다. 그리고 확장자에 맞게 delimter 를 지정하는 로직까지 있습니다. 

library(devtools)

install_github("plgrmr/readAny", force = TRUE)
library(readAny)

read.any("http://philogrammer.com/melon10_euc.csv", header = TRUE)

library(readr) read.any <- function(text, sep = "", ...) { encoding <- as.character(guess_encoding(text)[1,1]) setting <- as.character(tools::file_ext(text)) if(sep != "" | !(setting %in% c("csv", "txt")) ) setting <- "custom" separate <- list(csv = ",", txt = "\n", custom = sep) result <- read.table(text, sep = separate[[setting]], fileEncoding = encoding, ...) return(result) }

philogrammer 님의 방법에 추가적으로, 한 함수를 통해 엑셀 파일까지 읽어오기 위해 아래와 같이 변형해서 사용하였습니다. 

read_any <- function(text, sep = "", ...) {
  encoding <- as.character(guess_encoding(text)[1,1])
  setting <- as.character(tools::file_ext(text))
  
  if(setting == 'xlsx'){
      result <- read_excel(text)
  }
  else {
      if(sep != "" | !(setting  %in% c("csv", "txt")) ) setting <- "custom"
      separate <- list(csv = ",", txt = "\n", custom = sep)
      result <- read.table(text, sep = separate[[setting]], fileEncoding = encoding, ...)
  }
  return(result)
}

참고자료

http://philogrammer.com/2017-03-15/encoding/